41.2.3.2. Longitudinal force

The longitudinal force depends on the:

  • Vertical force (\({{F}_{z}}\))

  • Current coefficient of friction (\(\mu\))

  • Longitudinal slip ratio (\({{S}_{s}}\))

  • Slip angle (\(\alpha\))

The comprehensive slip ratio (\({{S}_{s\alpha }}\)):

(41.27)\[{{S}_{s\alpha }}=\sqrt{\left( {{S}_{s}}^{2}+{{\tan }^{2}}\alpha \right)}\]

The current value coefficient of friction (\(\mu\)):

(41.28)\[\mu ={{\mu }_{s}}-({{\mu }_{s}}-{{\mu }_{d}})\times {{S}_{s\alpha }}\]

A critical longitudinal slip (\({{S}^{*}}_{s}\))

(41.29)\[{{S}^{*}}_{s}=\left| \frac{\mu \times {{F}_{z}}}{2\times {{K}_{s}}} \right|\]
  1. Elastic Deformation State: \(\left| {{S}_{s}} \right|<{{S}^{*}}_{s}\)

    (41.30)\[F_x=-K_s \times S_s\]

    \({{K}_{s}}\): Partial derivative of longitudinal force (\({{F}_{x}}\)) with respect to longitudinal slip ratio (\({{S}_{s}}\)) at zero longitudinal slip

  2. Complete Sliding State: \(\left| {{S}_{s}} \right|>{{S}^{*}}_{s}\)

    (41.31)\[{{F}_{x}}=-sign{({{S}_{s}})({{F}_{x1}}-{{F}_{x2}})}\]
    where,
    \({{F}_{x1}}=\mu \times \left| {{F}_{z}} \right|\)
    \({{F}_{x2}}=\left| \frac{{{\left( \mu \times {{F}_{z}} \right)}^{2}}}{\left( 4\times \left| {{S}_{s}} \right|\times \xi \right)} \right|\)